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 1Bayesian Decision-Making Mitigates Effects of Base Rates on Outcome 

Confidence: A Monte Carlo Simulation

Russ Warner

Abigail Anderson

John C. Kircher

ABSTRACT

The accuracy of a test for detection is the proportion of individuals the test classifies correctly as 
truthful or deceptive, whereas outcome confidence is the probability that the test outcome is cor-
rect. Many consider test accuracy paramount, but accuracy is of no value if there is little chance 
the outcome is correct. Outcome confidence is affected by the prevalence of deception in the tested 
population, known as the base rate of deception. A low base rate of deception reduces confidence 
in deceptive test outcomes and may render them useless.

We conducted a Monte Carlo simulation that randomly sampled test scores from two 
hypothetical distributions of scores, one for guilty and one for innocent subjects. We used 
Bayes’ Theorem to combine information from the test scores and the base rates to classify subjects 
as truthful and deceptive. The computer recorded decision accuracy and outcome confidence at 
base rates of deception that ranged from 1% to 99%. Although accuracy decreased significantly at 
extremely low base rates, outcome confidence remained above 66%. When base rates of deception 
were low, the Bayesian approach extended the range of useful credibility assessments.

 1 The APA editorial staff thanks Dr. Raymond Nelson for accepting the role of Action Editor for this manuscript

COPYRIGHT AMERICAN POLYGRAPH ASSOCIATION



46 Polygraph & Forensic Credibility Assessment, 2024, 53 (1)

Warner, Anderson and Kircher

Introduction

The present study explored the effects of base 
rates of deception (BRD) on outcome confi-
dence when the BRD served as the prior proba-
bility in a Bayesian analysis of test scores. The 
prior probability that a person will be decep-
tive in a criminal investigation could be 20% 
or more than 70%, depending on whether they 
are one of several suspects in the early stag-
es of an investigation or a defendant in court. 
When screening potential employees for drug 
use or serious crimes, the prior depends on 
the issues covered by the test. It might be 40% 
for drug use but only 5% for serious crimes. 
The prior probability might be well below 0.1% 
of the tested population when testing for espi-
onage or sabotage.

Base rates and test accuracy affect outcome 
confidence (Grubin et al., 2016; Nelson, Han-
dler & Thiel, 2021; Raskin, 1984; 1986; 1987). 
Accuracy for deceptive individuals is the test’s 
sensitivity; it is the proportion of deceptive in-
dividuals the test classifies as deceptive. Accu-
racy for truthful individuals is the test’s spec-
ificity. Specificity is the proportion of truthful 
subjects correctly classified as such. 

In contrast to test accuracy, outcome confi-
dence is the likelihood that a particular test 
outcome is correct. Given a job applicant, 
employee, or suspect failed a polygraph test, 
what is the probability that the test outcome 
is correct? The probability that a deception-in-
dicated (DI outcome is correct is the test’s 
Positive Predictive Power (PPV), whereas the 
probability a no-deception-indicated (NDI) or 
credible decision is correct is its Negative Pre-
dictive Power (NPV). For those who requested 
the credibility assessments or determine the 
disposition of tested individuals, outcome con-
fidence (PPV and NPV) is more important than 

the test accuracy.  

To calculate accuracy on truthful and de-

ceptive people and outcome confidence, we 

cross-classify test subjects into one of four 

cells of a 2 X 2 table depending on wheth-

er they are guilty or innocent (ground truth) 

and whether we classify them as deceptive or 

truthful on the test. Table 1a represents the 

frequencies of these events as the letters A 

through D, and Table 1b shows the formula to 

calculate sensitivity, specificity, PPV, and NPV. 

Table 1a. Frequencies of outcomes in credibility assessments
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To calculate accuracy on truthful and deceptive people and outcome confidence, we cross-classify test
subjects into one of four cells of a 2 X 2 table depending on whether they are guilty or innocent (ground
truth) and whether we classify them as deceptive or truthful on the test. Table 1a represents the 
frequencies of these events as the letters A through D, and Table 1b shows the formula to calculate 
sensitivity, specificity, PPV, and NPV.

Table 1a. Frequencies of outcomes in credibility assessments
Decision 

“Deceptive” “Truthful” Sum 

Tr
ue

 
St

at
e Guilty A B (A + B) 

Innocent C D (C + D) 

Sum (A + C) (B +D) N 

Table 1b. Accuracies are proportions of row and column sums.
Statistic Formula Meaning
Sensitivity A / (A + B) Proportion of deceptive people classified as deceptive
Specificity D / (C + D) Proportion of truthful people classified as truthful
Positive Predictive Value A / (A + C) Proportion of deceptive outcomes that are correct

Negative Predictive Value D / (B + D) Proportion of truthful outcomes that are correct

For example, suppose in a group of 1,000 people to be tested, there are 150 deceptive and 850 truthful
people. If the test is 85% accurate, it will correctly classify .85 X 150 = 128 of the deceptive people and 
will err on (1 - .85) x 150 = 2. Similarly, the test will classify .85 X 850 = 723 truthful subjects correctly
and (1 - .85) x 850 = 127 incorrectly. These values appear in the Tables 2a and 2b.

Table 2a. Example frequencies of outcomes
Deceptive Truthful Sum

Guilty 128 22 150
Innocent 127 723 850
Sum 255 745 1,000
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Table 1b. Accuracies are proportions of row and column sums.
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For example, suppose in a group of 1,000 
people to be tested, there are 150 deceptive 
and 850 truthful people. If the test is 85% 
accurate, it will correctly classify .85 X 150 
= 128 of the deceptive people and will err on  

(1 - .85) x 150 = 22. Similarly, the test will 
classify .85 X 850 = 723 truthful subjects cor-
rectly and (1 - .85) x 850 = 127 incorrectly. 
These values appear in the Tables 2a and 2b.
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Table 1b. Accuracies are proportions of row and column sums.
Statistic Formula Meaning
Sensitivity A / (A + B) Proportion of deceptive people classified as deceptive
Specificity D / (C + D) Proportion of truthful people classified as truthful
Positive Predictive Value A / (A + C) Proportion of deceptive outcomes that are correct

Negative Predictive Value D / (B + D) Proportion of truthful outcomes that are correct

For example, suppose in a group of 1,000 people to be tested, there are 150 deceptive and 850 truthful
people. If the test is 85% accurate, it will correctly classify .85 X 150 = 128 of the deceptive people and 
will err on (1 - .85) x 150 = 2. Similarly, the test will classify .85 X 850 = 723 truthful subjects correctly
and (1 - .85) x 850 = 127 incorrectly. These values appear in the Tables 2a and 2b.

Table 2a. Example frequencies of outcomes 
Deceptive Truthful Sum 

Guilty 128 22 150 
Innocent 127 723 850 
Sum 255 745 1,000 

Table 2b. Accuracies where 150 of 1,000 test takers (15%) lie on the test
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Table 2b. Accuracies where 150 of 1,000 test takers (15%) lie on the test
Statistic Formula Meaning 
Sensitivity 128 / 150 = .85 Proportion of liars classified as 

deceptive 
Specificity 723 / 850 = .85  Proportion of truth-tellers classified as 

truthful 
Positive Predictive Value 
(PPV) 

128 / (128 + 127) = 
.50  

Proportion of deceptive outcomes that 
are correct 

Negative Predictive Value 
(NPV) 

723 / (723 + 22) = 
.97 

Proportion of truthful outcomes that 
are correct 

When the BRD is 15%, the probability that a deceptive outcome is correct is only 50%, the same as the 
toss of a fair coin.

Raskin (1984; 1986; 1987) discussed how outcome confidence (PPV and NPV) varies with changes in 
base rates. Generally, as deception in the population decreases, the BRD decreases, PPV drops and NPV
increases. This results because the population contains a higher proportion of truthful people, and the 
false positive errors on those many truthful people make up a higher proportion of deceptive outcomes. 
Conversely, as deception in the population increases PPV increases, and NPV decreases.

Effects of BRD on Outcome Confidence

The effects of base rates on PPV and NPV are mathematical consequences of the laws of probability.
Formally,

PPV = (sensitivity X BRD) / ((sensitivity X BRD) + (1-specificity) X (1 – BRD))
NPV = (specificity X (1-BRD)) / ((specificity X (1-BRD) + (1-sensitivity) X BRD))

Figure 1 shows the PPV and NPV for base rates of deception ranging from 1% to 99% for a hypothetical
credibility test that achieves 85% accuracy on both truthful and deceptive individuals. The relationship 
between outcome confidence and base rates follows the same pattern regardless of the assumed level
of test accuracy. As the BRD approaches zero (everyone in the testing population is truthful), the 
confidence in a deceptive outcome (PPV) drops precipitously. Conversely, as the BRD approaches 1
(everyone in the testing population is deceptive), the confidence one can have in a truthful outcome 
drops. There are overlapping horizontal lines at 85% that show equal sensitivity and specificity. 

The leftmost dotted lines in Figure 1 indicate 50% confidence that a deceptive outcome is correct when 
the BRD is 15%. An outcome confidence of 50% means a deceptive outcome is just as likely to be wrong
as correct. Ginton (2023) noted that outcome confidence of about 65%, although low, is still of value for
a large national police force. To achieve 65% confidence with a test that is 85% accurate, the base rate 
would have to exceed 25% (see rightmost dotted lines). If fewer than 25% of the tested population is
deceptive, confidence in a deceptive outcome would drop below 65%.
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When the BRD is 15%, the probability that a 
deceptive outcome is correct is only 50%, the 
same as the toss of a fair coin.

Raskin (1984; 1986; 1987) discussed how out-
come confidence (PPV and NPV) varies with 
changes in base rates. Generally, as deception 
in the population decreases, the BRD decreas-
es, PPV drops and NPV increases. This results 
because the population contains a higher pro-
portion of truthful people, and the false posi-
tive errors on those many truthful people make 
up a higher proportion of deceptive outcomes. 
Conversely, as deception in the population in-
creases PPV increases, and NPV decreases.
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probability. Formally, 
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Figure 1 shows the PPV and NPV for base rates 

of deception ranging from 1% to 99% for a hy-
pothetical credibility test that achieves 85% 
accuracy on both truthful and deceptive in-
dividuals. The relationship between outcome 
confidence and base rates follows the same 
pattern regardless of the assumed level of test 
accuracy. As the BRD approaches zero (every-
one in the testing population is truthful), the 
confidence in a deceptive outcome (PPV) drops 
precipitously. Conversely, as the BRD ap-
proaches 1 (everyone in the testing population 
is deceptive), the confidence one can have in a 
truthful outcome drops. There are overlapping 
horizontal lines at 85% that show equal sensi-
tivity and specificity. 

The leftmost dotted lines in Figure 1 indicate 
50% confidence that a deceptive outcome is 
correct when the BRD is 15%. An outcome 
confidence of 50% means a deceptive outcome 
is just as likely to be wrong as correct. Gin-
ton (2023) noted that outcome confidence of 
about 65%, although low, is still of value for 
a large national police force. To achieve 65% 
confidence with a test that is 85% accurate, 
the base rate would have to exceed 25% (see 
rightmost dotted lines). If fewer than 25% of 
the tested population is deceptive, confidence 
in a deceptive outcome would drop below 65%.

Figure 1. Effects of base rates on positive (PPV) and negative predictive value (NPV)
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Figure 1. Effects of base rates on positive (PPV) and negative predictive value (NPV)

These observations, as important as they are, have been in the literature for decades (Raskin, 1986;
1987; National Research Council, 2003) but seem to have had little impact on the application of
credibility assessments in programs that screen for rare events. 

The Purpose of this Article

This project explores the effects of a Bayesian analysis of the BRD and test data on outcome confidence
(PPV and NPV). We began with the base rate of deception (BRD). The BRD served as the prior probability 
that the subject was deceptive in a Bayesian analysis that combined information about the BRD and the 
test score. The analysis yielded a posterior probability of deception that the computer then used to
classify the subject as truthful or deceptive. In the present study, Bayes' formula took the following
form:

Pr(deceptive/test score) = { BRD X  Pr(test score/deceptive) } / 
{ BRD X Pr(test score/deceptive) + (1-BRD) X Pr(test score/truthful) },

where BRD was the base rate of deception; Pr(test score/deceptive) was the probability of the test score
given the person was deceptive; and Pr(test data/truthful) was the probability of the test score given the 
person was truthful (Kircher & Raskin, 1988). The Pr(deceptive/test score) was the posterior probability 
of deception. It was the probability of deception in light of the test data and was the basis for classifying
people as truthful or deceptive. 

Methods

We conducted a Monte Carlo simulation to assess the effects of the Bayesian approach on outcome
confidence. We programmed a computer to perform Monte Carlo simulation experiments by sampling
randomly from distributions of hypothetical test scores. The test scores might represent total numerical
scores by polygraph examiners, or they might be scores generated by a computer algorithm based on 
automated measurements of physiological reactions to questions on a polygraph or ocular-motor test.



49

Bayesian Decision-Making Mitigates Effects of Base Rates

These observations, as important as they are, 
have been in the literature for decades (Raskin, 
1986; 1987; National Research Council, 2003) 
but seem to have had little impact on the ap-
plication of credibility assessments in pro-
grams that screen for rare events. 

The Purpose of this Article

This project explores the effects of a Bayesian 
analysis of the BRD and test data on outcome 
confidence (PPV and NPV). We began with the 
base rate of deception (BRD). The BRD served 
as the prior probability that the subject was 
deceptive in a Bayesian analysis that com-
bined information about the BRD and the test 
score. The analysis yielded a posterior prob-
ability of deception that the computer then 
used to classify the subject as truthful or de-
ceptive. In the present study, Bayes’ formula 
took the following form:

Pr(deceptive/test score) = { BRD  X  Pr(test 
score/deceptive) }  /  
 { BRD X Pr(test score/deceptive) + (1- 
BRD)  X  Pr(test score/truthful) },

where BRD was the base rate of deception; 
Pr(test score/deceptive) was the probability of 
the test score given the person was deceptive; 
and Pr(test data/truthful) was the probability 
of the test score given the person was truthful 
(Kircher & Raskin, 1988). The Pr(deceptive/
test score) was the posterior probability of 
deception. It was the probability of deception 
in light of the test data and was the basis for 
classifying people as truthful or deceptive. 

Methods

We conducted a Monte Carlo simulation to 
assess the effects of the Bayesian approach 
on outcome confidence. We programmed a 
computer to perform Monte Carlo simula-
tion experiments by sampling randomly from 
distributions of hypothetical test scores. The 
test scores might represent total numerical 
scores by polygraph examiners, or they might 
be scores generated by a computer algorithm 
based on automated measurements of physi-
ological reactions to questions on a polygraph 
or ocular-motor test.

The leftmost curve in Figure 2 shows a hypo-
thetical distribution of test scores for people 
guilty of a crime and lie about it on the test. 
The rightmost curve shows the distribution of 
scores for innocent, truthful subjects. The dis-
tributions are bell-shaped and equidistant but 
on opposite sides of zero. Most of the scores 
for guilty people fall below zero, although 15% 
are positive. Likewise, most scores for inno-
cent subjects exceed zero, although 15% are 
negative.

The vertical line at zero is the optimal cutoff 
for classifying subjects as guilty or innocent, 
assuming we are equally concerned about 
false positive and false negative decision er-
rors. If we classify those with positive scores 
as innocent and those with negative scores as 
guilty, we would correctly classify 85% of in-
nocent and 85% of guilty subjects. 

Figure 2. Hypothetical distributions of test scores for guilty and innocent subjects
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The leftmost curve in Figure 2 shows a hypothetical distribution of test scores for people guilty of a
crime and lie about it on the test. The rightmost curve shows the distribution of scores for innocent,
truthful subjects. The distributions are bell-shaped and equidistant but on opposite sides of zero. Most
of the scores for guilty people fall below zero, although 15% are positive. Likewise, most scores for
innocent subjects exceed zero, although 15% are negative.

Figure 2. Hypothetical distributions of test scores for guilty and innocent subjects

The vertical line at zero is the optimal cutoff for classifying
subjects as guilty or innocent, assuming we are equally 
concerned about false positive and false negative decision 
errors. If we classify those with positive scores as innocent and 
those with negative scores as guilty, we would correctly classify 
85% of innocent and 85% of guilty subjects. 

Moving the cutoff below zero would misclassify more guilty
subjects and classify more innocent subjects correctly. Moving
the cutoff above zero would detect more liars but misclassify
more innocent subjects.

Monte Carlo Simulation

The computer sampled 1,000,000 scores at random from these two distributions. It did this 300 times at
each base rate ranging from 1% to 99% and averaged the results. If the base rate was 50%, the 
computer sampled half of the scores from the guilty distribution and half from the innocent distribution.
If the base rate was 10%, the computer sampled 10% of 1,000,000 or 100,000 scores from the guilty 
distribution, and the remaining 900,000 from the innocent distribution. The means of the distributions
for guilty and innocent subjects were -1.04 and +1.04, respectively, and both distributions had standard 
deviations of 1. The cut value zero isolated the upper and lower 15% of the guilty and innocent
distributions, respectively. 

To draw a single score from one of these distributions, we used the Box-Muller algorithm to generate a 
normally distributed random number with a mean of zero and a standard deviation of one (Press et al., 
1992). To simulate a guilty subject, we added the mean of the guilty distribution (-1.04) to that random 
number. To simulate an innocent subject, we added the mean of the innocent distribution (+1.04) to the 
random number.

The computer used each randomly selected score to calculate two conditional probabilities, Pr(test
data/deceptive) and Pr(test data/truthful) (Kircher & Raskin, 1988). Bayes' formula used those 
conditional probabilities and the BRD to compute the posterior probability of deception. When the 
posterior probability was greater than 0.5, the computer classified the person as guilty, and when it was
less than or equal to 0.5, it classified the person as innocent. 

For each sample of 1,000,000 cases, we computed the accuracy for guilty and innocent subjects, PPV,
and NPV and saved the four values. We repeated this process 300 times at base rates ranging from 1%
to 99% and averaged the results. We needed a large sample size for each iteration to stabilize the tails of
the PPV and NVP curves.
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Moving the cutoff below zero would misclassi-
fy more guilty subjects and classify more in-
nocent subjects correctly. Moving the cutoff 
above zero would detect more liars but mis-
classify more innocent subjects.

Monte Carlo Simulation

The computer sampled 1,000,000 scores at 
random from these two distributions. It did 
this 300 times at each base rate ranging from 
1% to 99% and averaged the results. If the 
base rate was 50%, the computer sampled 
half of the scores from the guilty distribution 
and half from the innocent distribution. If the 
base rate was 10%, the computer sampled 
10% of 1,000,000 or 100,000 scores from the 
guilty distribution, and the remaining 900,000 
from the innocent distribution. The means of 
the distributions for guilty and innocent sub-
jects were -1.04 and +1.04, respectively, and 
both distributions had standard deviations of 
1. The cut value zero isolated the upper and
lower 15% of the guilty and innocent distribu-
tions, respectively.

To draw a single score from one of these distri-
butions, we used the Box-Muller algorithm to 
generate a normally distributed random num-
ber with a mean of zero and a standard devi-
ation of one (Press et al., 1992). To simulate a 
guilty subject, we added the mean of the guilty 

distribution (-1.04) to that random number. 
To simulate an innocent subject, we added the 
mean of the innocent distribution (+1.04) to 
the random number.

The computer used each randomly selected 
score to calculate two conditional probabili-
ties, Pr(test data/deceptive) and Pr(test data/
truthful) (Kircher & Raskin, 1988). Bayes’ for-
mula used those conditional probabilities and 
the BRD to compute the posterior probability 
of deception. When the posterior probability 
was greater than 0.5, the computer classi-
fied the person as guilty, and when it was 
less than or equal to 0.5, it classified the 
person as innocent. 

For each sample of 1,000,000 cases, we com-
puted the accuracy for guilty and innocent 
subjects, PPV, and NPV and saved the four 
values. We repeated this process 300 times at 
base rates ranging from 1% to 99% and av-
eraged the results. We needed a large sample 
size for each iteration to stabilize the tails of 
the PPV and NVP curves.

Results

Figure 4 shows the means of the 300 data 
sets. The X-axis shows BRD ranging from 1% 
to 99%. The curves show the effects of differ-
ent BRD on accuracy for guilty and innocent 
subjects, PPV, and NPV.

Figure 4. Accuracy and PPV and NPV with Bayesian Adjustments for Changes in Base Rates
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Results

Figure 4 shows the means of the 300 data sets. The X-axis shows BRD ranging from 1% to 99%. The
curves show the effects of different BRD on accuracy for guilty and innocent subjects, PPV, and NPV. 

Figure 4. Accuracy and PPV and NPV with Bayesian Adjustments for Changes in Base Rates

Sensitivity, Specificity, and Confidence

When the BRD was as low as 1%, accuracy on guilty subjects (red) dropped to 12%. Accuracy increased
to 85% when the BRD was 50% and approached 100% when the BRD was 99%. The opposite effect
occurred for innocent subjects. Accuracy for innocent subjects (green) was almost 100% when the BRD
was very low and only 12% when the BRD was very high.

With the Bayesian approach, decisions on one group or the other were inaccurate at extreme base 
rates. However, PPV and NPV remained above 66% for BRD between 1% and 99%. For example, when 
the BRD was 5% (dotted line), only 35% of guilty subjects were correctly classified, but when a subject
was called deceptive, there was a 72% chance the decision was correct.

Figure 5 shows the proportion of all subjects classified correctly as a function of the BRD. The total
number of people classified correctly was highest at the two most extreme base rates because the base 
rates were themselves so diagnostic of the person’s deceptive status. The fewest number of people 
classified correctly occurred when the BRD was 50%. In that case, the BRD canceled out of Bayes’
equation, and accuracy was equal to the validity of the test. The mean accuracy of decisions across base
rates from 1% to 99% was 89.4%. When the decision maker does not account for the BRD, accuracy 
remains constant at the lowest point along the curve (85%).
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Sensitivity, Specificity, and 
Confidence

When the BRD was as low as 1%, accuracy on 
guilty subjects (red) dropped to 12%. Accuracy 
increased to 85% when the BRD was 50% and 
approached 100% when the BRD was 99%. 
The opposite effect occurred for innocent sub-
jects. Accuracy for innocent subjects (green) 
was almost 100% when the BRD was very low 
and only 12%  when the BRD was very high. 

With the Bayesian approach, decisions on one 
group or the other were inaccurate at extreme 
base rates. However, PPV and NPV remained 
above 66% for BRD between 1% and 99%. 
For example, when the BRD was 5% (dotted 
line), only 35% of guilty subjects were correct-
ly classified, but when a subject was called 

deceptive, there was a 72% chance the deci-
sion was correct. 

Figure 5 shows the proportion of all subjects 
classified correctly as a function of the BRD. 
The total number of people classified correct-
ly was highest at the two most extreme base 
rates because the base rates were themselves 
so diagnostic of the person’s deceptive sta-
tus. The fewest number of people classified 
correctly occurred when the BRD was 50%. 
In that case, the BRD canceled out of Bayes’ 
equation, and accuracy was equal to the valid-
ity of the test. The mean accuracy of decisions 
across base rates from 1% to 99% was 89.4%. 
When the decision maker does not account for 
the BRD, accuracy remains constant at the 
lowest point along the curve (85%). 

Figure 5. The proportion of correct classifications at base rates from 1% to 99%
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Figure 5. The proportion of correct classifications at base rates from 1% to 99%

Discussion

If base rates are not considered in credibility assessment testing, the consumer may place too little or
too much confidence in test results than they deserve. Assuming a BRD of 15% and a test that is 85%
accurate, a truthful outcome has a 97% chance of being correct. However, a deceptive outcome is just as
likely to be wrong as it is correct. Unlike a truthful outcome, a deceptive outcome would lack utility. 

The present experiment assumed a hypothetical credibility test with 85% accuracy when testing truthful
and deceptive individuals. It showed that a Bayesian approach to decision-making extended the range of
useful test outcomes. For example, the Utah numerical scoring system (Bell et al., 1999) uses a fixed 
cutoff decision policy and does not consider variability in BRD. We can expect that type of decision 
policy to provide at least 75% confidence when base rates are between 35% and 65% for a test with 85%
sensitivity and specificity. For the same test, a Bayesian decision policy provides comparable confidence 
levels for base rates that range from 5% to 95%. We can use the Bayesian approach in a broader range 
of settings than a traditional decision policy and achieve similar confidence in the outcome. 

Increasing test accuracy generally increases outcome confidence and extends the range of base rates 
that provide helpful test outcomes. For clarity, the present study considered a single test accuracy of
85%. If test accuracy were 90%, BRD between 3% and 97% would produce PPV and NPV that exceed 
74%. A reduction in test accuracy would have the opposite effect, decreasing the range of BRD that 
yields useful outcomes. 

Weighted Accuracy

The Bayesian approach increased both outcome confidence and the total number of correct decisions. 
Without Bayesian adjustments for BRD, a test with 85% accuracy and no inconclusive outcomes yields
85% correct decisions regardless of the BRD. With the Bayesian approach, where the prior probabilities
represent the base rates, accuracy varies with BRD. The present study's mean accuracy across all BRD
was 89.4%. Mean accuracy across all BRD exceeded test accuracy of 85% because the Bayesian approach 
included information about base rates in its decisions, and the base rates became more diagnostic as 
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Discussion

If base rates are not considered in credibility 
assessment testing, the consumer may place 
too little or too much confidence in test results 
than they deserve. Assuming a BRD of 15% 
and a test that is 85% accurate, a truthful 
outcome has a 97% chance of being correct. 
However, a deceptive outcome is just as likely 
to be wrong as it is correct. Unlike a truth-
ful outcome, a deceptive outcome would lack 
utility. 

The present experiment assumed a hypothet-
ical credibility test with 85% accuracy when 
testing truthful and deceptive individuals. 
It showed that a Bayesian approach to deci-
sion-making extended the range of useful test 
outcomes. For example, the Utah numerical 
scoring system (Bell et al., 1999) uses a fixed 
cutoff decision policy and does not consider 
variability in BRD. We can expect that type of 
decision policy to provide at least 75% confi-
dence when base rates are between 35% and 
65% for a test with 85% sensitivity and spec-
ificity. For the same test, a Bayesian decision 
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policy provides comparable confidence levels 
for base rates that range from 5% to 95%. We 
can use the Bayesian approach in a broader 
range of settings than a traditional decision 
policy and achieve similar confidence in the 
outcome. 

Increasing test accuracy generally increases 
outcome confidence and extends the range of 
base rates that provide helpful test outcomes. 
For clarity, the present study considered a 
single test accuracy of 85%. If test accuracy 
were 90%, BRD between 3% and 97% would 
produce PPV and NPV that exceed 74%. A re-
duction in test accuracy would have the oppo-
site effect, decreasing the range of BRD that 
yields useful outcomes. 

Weighted Accuracy

The Bayesian approach increased both out-
come confidence and the total number of cor-
rect decisions. Without Bayesian adjustments 
for BRD, a test with 85% accuracy and no in-
conclusive outcomes yields 85% correct deci-
sions regardless of the BRD. With the Bayesian 
approach, where the prior probabilities repre-
sent the base rates, accuracy varies with BRD. 
The present study’s mean accuracy across all 
BRD was 89.4%. Mean accuracy across all 
BRD exceeded test accuracy of 85% because 
the Bayesian approach included information 
about base rates in its decisions, and the 
base rates became more diagnostic as they 
approached 0 or 1. A decision policy that does 
not consider the BRD forfeits a source of diag-
nostic information when the BRD is not 50%.

Confidence Criteria

Consumers of credibility assessments, such 
as police investigators, human resource per-
sonnel, attorneys, and courts, should be less 
concerned with test accuracy than PPV. PPV 
indicates the likelihood that a deceptive test 
outcome is correct. When the PPV is less than 
50%, a deceptive outcome is not helpful be-
cause it is more likely to be wrong than cor-
rect. 

At what point is a credibility test useful? Is 
it when PPV exceeds 65% (Ginton, 2022), or 
should the criterion be 75% or even 85%? 
Whatever value is chosen, the base rate should 

be sufficient to achieve that criterion. If the 
test is used with a population that contains 
too few deceptive individuals, confidence in a 
deceptive outcome will not meet the standard.

A deceptive outcome may not be helpful be-
cause it does not meet some criterion level 
of confidence. However, in the same setting, 
a truthful outcome will probably have value 
because the lowest confidence for deceptive 
outcomes (PPV) is associated with the highest 
confidence for truthful ones (NPV), and vice 
versa. 

The criterion confidence level for a particular 
organization probably should depend on the 
testing context. When missing a deceptive in-
dividual in the early stages of a criminal in-
vestigation or a screening scenario has serious 
consequences, a PPV of 65% might be enough 
to keep the individual among those requiring 
further evaluation. However, when PPV is as 
low as 65%, the organization should realize 
there is a 35% chance the person who failed 
the test was truthful.

A traditional scoring system that uses fixed 
cutoffs provides the same sensitivity and 
specificity regardless of the BRD. Since the 
Bayesian approach has the disadvantage of 
lower test sensitivity or specificity as the BRD 
approaches one extreme or the other, the tra-
ditional approach may appear to be superior. 
However, compared to the Bayesian approach, 
the traditional approach has lower outcome 
confidence when the BRD departs from 50%. 
A traditional, non-Bayesian decision policy 
will classify 85% of deceptive subjects correct-
ly when the base rate of deception is 10%, but 
what good is the decision if less than half of 
deceptive outcomes are correct? 

In contrast, the Bayesian approach will cor-
rectly detect only 50% of guilty subjects at 
that BRD, but over 74% of its deceptive out-
comes will be correct. For this reason, we be-
lieve the Bayesian approach has more utility 
than traditional decision policies that do not 
consider base rates. The Bayesian approach 
has the added advantage of higher overall test 
accuracy because it incorporates BRD which 
becomes more diagnostic as it approaches 0 
or 1. 
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Specifying the Base Rate of Deception

The proposed Bayesian approach requires the 
specification of the BRD. Raskin (1987) and 
others (Ginton, 2022; Grubin et al., 2016) 
describe methods for estimating base rates. 
Those procedures require estimates of test 
accuracy and observed numbers of truthful 
and deceptive outcomes. Because accura-
cy estimates are available from the Ameri-
can Polygraph Association for the polygraph 
(APA, 2011), any agency that tracks numbers 
of truthful and deceptive polygraph outcomes 
could use those formulas to estimate the BRD 
for its organization. 
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